Контакты
Подписка
МЕНЮ
Контакты
Подписка

Сенсорные экраны решение проблем. Часть 3

В рубрику "Оборудование и технологии" | К списку рубрик  |  К списку авторов  |  К списку публикаций

Сенсорные экраны решение проблем
Часть 3


Иван Мухин
СПбГУТ им. проф. М.А. Бонч-Бруевича

Применение резистивных и емкостных экранов, описанных в предыдущих частях статьи, не всегда бывает целесообразным. В некоторых случаях удобнее применять другие технологии. Рассмотрим их подробнее в третьей, заключительной части статьи

Конструкция матричных сенсорных экранов, называемых иногда цифровыми, очень схожа с конструкцией экранов резистивных; только вместо сплошных резистивных слоев используются горизонтальные и вертикальные прозрачные проводящие полосы. При касании экрана передняя пленка деформируется, и вертикальная полоса касается горизонтальной. Наличие замыкания фиксирует микропроцессор. Расположение всех электродов на плоскости известно, а потому пересечение замкнутых электродов однозначно определяет точку касания экрана.

Основной недостаток данного устройства — очень низкое разрешение, порядка 10 линий на дюйм. Поэтому такие устройства совершенно не подходят для рисования и ввода надписей. Главное же их достоинство — самая низкая среди всех сенсорных экранов стоимость. Надежность матричных экранов выше, чем резистивных, так как даже при нарушении проводящего слоя (изменении сопротивления)микроконтроллер определит наличие замыкания между электродами и вычислит координаты точки касания точно. Матричные экраны применяются в тех случаях, когда требуется дешевый экран, а программа-приложение допускает низкую точность указания.

Сенсорные экраны, использующие поверхностные акустические волны (surface acoustic wave, SAW), имеют довольно сложную конструкцию (рис. 1).

По углам прочного стеклянного основания, служащего основой конструкции, находятся пьезоэлектрические излучатели, генерирующие ультразвук (5 МГц). По периметру экрана расположены массивы отражателей, благодаря которым излучаемая акустическая волна распространяется по всей поверхности экрана и фиксируется пьезоэлектрическими приемниками. При касании экрана пальцем часть энергии акустических волн поглощается. Приемники фиксируют это изменение, а микроконтроллер вычисляет положение точки касания. Точность этих экранов выше, чем матричных, но ниже, чем традиционных емкостных. Для рисования и ввода текста они, как правило, не используются.

Главным достоинством экрана на поверхностных акустических волнах (ПАВ) является возможность отслеживать не только координаты точки, но и силу нажатия, благодаря тому, что степень поглощения акустических волн зависит от величины давления в точке касания. Данное устройство имеет очень высокую прозрачность, так как свет от отображающего прибора проходит через стекло, не содержащее резистивных или проводящих покрытий. В некоторых случаях для борьбы с бликами стекло вообще не используется, а излучатели, приемники и отражатели крепятся непосредственно к экрану отображающего устройства.

Главным недостатком экрана на ПАВ являются сбои в работе при наличии вибрации или при воздействии акустическими шумами, а также при загрязнении экрана. Любой посторонний предмет, размещенный на экране (например, жевательная резинка), полностью блокирует его работу. Кроме того, данная технология требует касания предметом, который обязательно поглощает акустические волны, — то есть, например, пластиковая банковская карточка в данном случае неприменима.

Несмотря на сложность конструкции, эти экраны довольно долговечны. По заявлению, например, тайваньской фирмы GeneralTouch, они выдерживают до 50 млн касаний в одной точке, что превышает ресурс 5-проводного резистивного экрана. Экраны на ПАВ применяются в основном в игровых автоматах, в охраняемых справочных системах и образовательных учреждениях.

Если нужно качественное изображение

В ряде случаев к качеству изображения, воспроизводимого отображающим устройством, предъявляются строгие требования. Это касается дисплеев, предназначенных главным образом для просмотра телевизионных передач, видеофильмов или для отображения иллюстративного материала (слайдов и фотографий), например, в художественном кружке или фотостудии. При необходимости оснащения такого устройства сенсорным экраном лучшим решением будет применение инфракрасной технологии. Для определения точки касания используются две линейки светодио-дов, расположенные по вертикали и горизонтали, и две линейки фотодиодов, расположенные на противоположных сторонах экрана (рис. 2).

Каждому светодиоду соответствует свой фотодиод. Работает такая оптическая пара следующим образом. При подаче напряжения на светодиод он излучает невидимый для человека инфракрасный свет в пределах очень небольшого телесного угла, чтобы попасть на "свой" фотодиод и "не задеть" соседние. Любое препятствие (например, касающийся экрана палец руки), частично или полностью перекрывающее световой луч, приводит к уменьшению или прекращению электрического тока через соответствующий фотодиод. Это изменение фиксируется микроконтроллером, позволяя вычислить координаты касания с высокой точностью. Обычно светодиод (и соответственно фотодиод) в линейке имеет размеры порядка 2,5 мм, то есть на каждый квадратный сантиметр панели приходится четыре горизонтальных и четыре вертикальных сканирующих луча. Однако механизмы интерполяции, используемые микроконтроллером, позволяют вычислять положение препятствия с большей точностью. Инфракрасный сенсорный экран выполнен в виде рамки, которая не имеет никаких стекол или прозрачных пленок. Поэтому изменение яркости, контраста и цветопередачи изображения, а также появление дополнительных бликов исключено, что является несомненным достоинством экрана.

Инфракрасная технология не лишена ряда недостатков. Применение в качестве отображающего устройства жидкокристаллических панелей нежелательно, так как касание их поверхности может привести к повреждению TFT-транзисторов и появлению "мертвых" точек (которые всегда либо включены, либо выключены). Рамка сенсорного экрана зачастую не прилегает к экрану дисплея вплотную, а находится на некотором расстоянии, при этом вследствие параллакса становятся заметными ошибки определения координат по углам. Устройство имеет невысокую надежность, что связано, во-первых, с небольшим сроком службы ИК-свето-диодов, а во-вторых, с особенностями конструкции — оптопары боятся пыли, загрязнений и конденсата. Попадание прямого солнечного света вызывает сбои в работе. Кроме того, такие экраны имеют самую высокую стоимость. Применяются ИК-экраны обычно в образовательных учреждениях (в качестве интерактивных панелей большого размера) и в игровых автоматах.

Удивительная DViT

Для работы с большими отображающими устройствами также используется технология DViT (Digital Vision Touch) фирмы Smart Technologies. Сенсорный экран представляет собой лист полиэстера, заключенный в прямоугольную рамку. По углам рамки находятся миниатюрные видеокамеры, которые формируют изображение поверхности экрана (рис. 3).

Для вычисления координат точки касания математически достаточно двух камер, расположенных в соседних углах. Однако для повышения точности часто используются четыре камеры. Для защиты экрана отображающего устройства (например, ЖК-панели) служит лист полиэстера. Он не содержит резистивных или проводящих слоев, поэтому не искажает цветопередачу дисплея и имеет высокую прозрачность (до 95%). Точности вычисления координат достаточно для рисования и ввода надписей. Эта технология предназначена для применения в образовательных учреждениях, при проведении конференций и презентаций. Сенсорная насадка может использоваться с матричными дисплеями и проекционными (прямой и обратной проекции) отображающими устройствами, формирующими изображение большого размера. В комплекте с экраном может поставляться лоток с "цветными" электронными перьями для рисования и ластиком. Цвет используемого пера или наличие на экране ластика определяется либо с помощью датчиков лотка, фиксирующих отсутствие инструмента, либо с помощью видеокамер. Это весьма удобно, так как выбор цвета надписей и переход в режим стирания осуществляются автоматически.

Жизненно необходимо

Для переносных электронных устройств, например планшетов, трЗ-плейеров, коммуникаторов и карманных персональных компьютеров (КПК или Pocket PC, называемых также на-ладонниками, PDA и Palm), сенсорный экран является жизненно необходимым компонентом пользовательского интерфейса. Учитывая габариты, наличие батарейного питания и особенности эксплуатации перечисленных выше устройств, ясно, что из описанных выше технологий подходят только рези-стивные и РСТ-экраны. Обе технологии имеют общие недостатки. Во-первых, сенсорные панели располагаются перед экраном, а потому уменьшают яркость и контраст, искажают цветопередачу. Во-вторых, функциональность (количество выполняемых действий) этих устройств ниже, чем у традиционной мыши. Например, применение резистивного экрана в ряде случаев требует отдельной кнопки — аналога правой клавиши мыши. В отличие от резистивной технологии, РСТ-экран способен различать прикосновение стилуса и пальца руки. Это позволяет использовать палец в качестве аналога правой клавиши мыши, что, однако, не всегда удобно.

От описанных выше недостатков свободны индуктивные сенсорные экраны, принцип действия которых схож с РСТ-технологией. Под жидкокристаллическим экраном размещается панель, содержащая выполненные печатным способом катушки индуктивности. При подаче переменного напряжения катушки формируют на поверхности экрана электромагнитное поле. В качестве указателя используется стилус, в котором находится настроенный в резонанс контур. При поднесении стилуса к экрану этот контур модулирует электромагнитное поле, изменяя индуктивность расположенных под экраном печатных катушек. Причем чем ближе катушка к контуру стилуса, тем значительнее изменение ее индуктивности. Микроконтроллер фиксирует параметры катушек и вычисляет положение стилуса. Для повышения функциональности стилус обычно снабжается встроенной подключает дополнительные витки к контуру, тем самым позволяя микроконтроллеру различать два разных состояния указателя. Индуктивный экран не влияет на качество изображения, не реагирует на касание ладонью при письме или рисовании и широко применяется в мобильных устройствах, например в планшетных компьютерах.

Новые технологии

Как известно, нет предела совершенству. И любой экран, как бы ни был он хорош, имеет недостатки. Это обстоятельство является стимулом для создания новых технологий. Применение большинства разработок пока весьма ограничено. Однако некоторым "счастливчикам" удается вырваться из "застенков" лабораторий. В настоящее время, например, внедряется технология использования дисперсионных волн (Dispersive Signal Technology, DST). Суть ее такова. Палец или стилус, касающийся подложки экрана, инициирует объемные изгибные акустические колебания. В углах подложки находятся пьезоэлектрические преобразователи, трансформирующие энергию вибрации в электрические сигналы. По разности фаз, приходящих из углов колебаний, микроконтроллер определяет положение точки касания. Экран имеет высокую прозрачность, долговечен и позволяет игнорировать касание ладони. Активируется любым предметом. Возможно использование с экранами как маленького, так и большого размера.

Другой инновационной технологией является применение LCD-панелей со встроенным оптическим сенсорным экраном. Работает это устройство следующим образом. Для упрощения и удешевления всей конструкции применяется ЖК-экран, каждый пиксель которого состоит из четырех субпикселей (красного, зеленого, синего и белого).

Последовательно с TFT-транзисто-ром белого субпикселя включается фототранзистор (рис. 4).

Белые субпиксели покрываются изнутри светонепроницаемым составом, однако снаружи фототранзисторы подвержены воздействию внешних источников света, например солнца или настольной лампы. Механизм обновления изображения панели в изменениях не нуждается. При поступлении сигнала логической единицы на горизонтальный электрод (Select) открываются TFT-транзиторы субпикселей всей строки. Сразу после этого по вертикальным электродам (Data) на конденсаторы красного, зеленого и синего субпикселей подается напряжение, соответствующее их яркости в данном кадре. А вот электроды белых субпикселей используются для измерения сопротивления цепочек с фототранзисторами. В случае попадания света от внешних источников фототранзисторы открыты и сопротивление низкое. Если же доступ света перекрыт пальцем или стилусом, то фототранзистор закрывается и не пропускает ток — сопротивление высокое. Микропроцессор сравнивает сопротивления в процессе развертки и таким образом вычисляет координаты точки касания. Устройство способно работать в очень широком диапазоне освещенности экрана — от 50 до 50 000 люкс.

Преимущества обладателей

Применение сенсорных экранов дает ряд преимуществ их обладателям. Например, интерактивные справочные системы (киоски), используемые в аптеках, торговых центрах, банках и на вокзалах, удобны в обращении и позволяют экономить время, чем, несомненно, привлекают клиентов. Использование сенсорных панелей и планшетов вместо меловых досок в сфере образования также сулит определенные выгоды. Обычно значительную часть занятия преподаватель тратит на рисование схем, графиков и таблиц, а иногда даже на переписывание листингов компьютерных программ. В итоге ценное время на объяснение представленного на доске материала сокращается. При таком режиме работы учащемуся трудно сосредоточиться на обдумывании материала, так как он занят копированием записей с доски. Применяя отображающие устройства, можно эффективно использовать заранее подготовленный иллюстративный материал, что экономит массу времени. Наличие у дисплея сенсорных свойств позволяет делать любые пометки, надписи и рисунки в процессе объяснения. Вся изложенная на лекции информация, включая рисунки преподавателя, легко копируется в неизменном виде в любом количестве и может использоваться учащимися. Таким образом, благодаря внедрению интеллектуальных панелей можно повысить качество преподавания и поднять уровень образования.

К сожалению, в нашей стране применение сенсорных экранов пока очень ограничено. Остается надеяться, что со временем этот недостаток удастся победить.

Опубликовано: Журнал "Broadcasting. Телевидение и радиовещание" #7, 2006
Посещений: 29211

  Автор

Иван Мухин

Иван Мухин

Аспирант кафедры телевидения Государственного университета телекоммуникаций им. проф. М.А. Бонч-Бруевича (г. Санкт-Петербург)

Всего статей:  3

В рубрику "Оборудование и технологии" | К списку рубрик  |  К списку авторов  |  К списку публикаций